nXis - Well Integrity Inspection in Unconventional Gas Wells

DE-FOA-0001076

Matthias Kasten, Ph.D. General Electric Company

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- Project Goals & Objectives
- Technical Status
 - Neutron Modality
 - X(γ)-Ray Modality
 - Ultrasound Modality
 - Electromagnetic Modality
 - Multi-Modality Data Fusion
 - Test Pit Testing
- Accomplishments to Date
- Summary

Benefit to the Program

- Well integrity inspection for multi-casing gas wells to enhance safety and environmental protection.
- Dual-particle imaging technique using neutron and X(γ)ray backscatter.
- The research project is developing a new dual-particle imaging technique, combining neutron and $X(\gamma)$ -ray modalities, and algorithmically fusing this data with information obtained from electromagnetic imaging to obtain results which are intrinsically more accurate than the simple union of individual modality results.

Project Overview: Goals and Objectives

- Measuring the integrity of multiple well casings and • cement annuli at intermediate-to-surface depths along major ground water zones.
- Current imaging technologies cannot resolve multiple annuli in the intermediate zone above 10,000 ft. where there are 2 to 5 stacked casing/cement rings.
- Ultrasound-based techniques do not operate reliably in gas filled wellbores.
- Electromagnetic tools are sensitive only to damages in • metallic structures. Internal pipe strings magnetically shield external pipes to significantly reduce sensitivity.

Project Overview: Goals and Objectives

Neutron Modality

Neutron Backscatter Experimental Setup

Neutron Detector Assembly

Photographs of integrated neutron generator prototype system (1-11/16" form factor).

Neutron Modality

Phantom with 3"×2.5" diameter defects: cement (no defect), air void, and HD PE.

Detection Results:

- Clear distinction between cement (no defect), air void, and high-density polyethylene (HD PE) for 3" by 2.5" size defect.
- Azimuthal defect detection.

Neutron Modality

X(γ)-Ray Modality

Monte Carlo N-Particle (MCNP) Simulation:

Definition of Detectability:

A defect is deemed detectable if the threshold metric of 2σ is met (95% confidence).

Defect:

Air void defects with various diameters (e.g. 1/8")

Source:

X(γ)-Ray source

X(γ)-Ray Modality

$X(\gamma)$ -Ray Modality

Detection Results:

- Detection of 1/8" air void in 2nd metal casing and cement annulus (from MCNP simulations).
- Defect detectability up to 3.5" past first casing (from MCNP simulations).
- Azimuthal defect detection.

Photograph of 1/4" through hole steelcement-steel void detection experiment.

Backscatter rate vs. defect position for $\frac{1}{2}$ " and $\frac{1}{4}$ " blind hole (3mm depth, 50%).

X(γ)-Ray Modality

Multi-Annulus Experimental Lab Setup

Multi-Annulus X(γ)-Ray Detector

Detection of air void defects in concrete

Ultrasound Modality

Electro Magnetic Acoustic Transducer (EMAT) Testing

Various test setups used for EMAT evaluation

Photograph of laboratory setup

Small signal variations for SH wave experiment!

Electromagnetic Modality

Production tube inspection with a 1.5" transceiver probe. External area material losses of 20%, 30%, and 40%.

Detection Results:

- Defect detectability (material loss) in 1st casing.
- Eccentricity detectability between 1st and 2nd casing.
- Azimuthal defect detection.

Casing Eccentricity Measurements

Electromagnetic Modality

Signals from multiple coils allow for unique identification of the pipe position/eccentricity.

Multi-Modality Data Fusion

Multi-Modality Data Fusion

Experimental EM image (top) and fused data image between EM and $X(\gamma)$ -ray (bottom)

Test Pit Testing

Test Plan:

- Testing of neutron, $X(\gamma)$ -ray, and EM modality in vertical test pit
- Using multi-casing well phantom with engineered defects
- Performance characterization for each modality
- Data fusion between modalities

Accomplishments to Date

- Established capabilities of high-energy modalities (neutron and X(γ)-ray backscatter based detection) through Monte Carlo N-Particle (MCNP) simulations.
- Built high- and low energy modality prototypes and performed experiments in laboratory environment.
- Conducted data analysis and data fusion between electromagnetic and X(γ)-ray modality.
- Optimized designs for all inspection modalities.

Synergy Opportunities

- Collaboration with DOE projects such as:
 - Integrated Wellbore Integrity Analysis Program for CO₂ Storage Applications - Battelle Memorial Institute
 - Wellbore and Seal Integrity Los Alamos National Laboratory
 - Improving Science-Base for Wellbore Integrity, Barrier Interface Performance – National Energy Technology Laboratory
- Joint test well preparation with engineered structural flaws in multi-casing/multi cement annuli for field testing and performance evaluation.

Summary

- Key Findings
 - X(γ)-ray modality can detect defects as small ¹/₈" in diameter at distance up to 3.5" past the first casing (through MCNP simulations).
 - Neutron modality provides azimuthal defect resolution between defects such as air voids, cement, or high-density polyethylene.
 - Electromagnetic inspection modality detects material loss in 1st casing and directional eccentricity between 1st and 2nd casing.
 - Data fusion between modalities can enhance detection capabilities.

Summary

- Lessons Learned
 - Low ultrasound frequencies (<65kHz) are required to overcome impedance mismatch between gas filled well and steel casing.
- Future Plans
 - Finalize design optimization, build subsystem prototypes, and perform system calibration in controlled lab environment.
 - Conduct performance analysis of nXis prototypes in vertical test pit (multi-casing wellbore phantom with engineered defects).
 - Perform data analysis & fusion between imaging modalities.

Acknowledgement

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government of any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or of any agency thereof.

Appendix

Organization Chart

GE Project Team

GE Project Team

Juan-Pablo Celia Robert Tait

Paul Chen

Design & Mechanical Engineering Team

Drilling & Completion Team

29

Starfire Industries Team

Brian Jurczyk, Robert Stubbers, Matt Coventry, Aaron Krites, and Darren Alman

Technical Review Team

Photonics Laboratory

GE Corporate, GRC

NETL

U.S. Department of Energy

Technology Ldr. Electronics - ETS GE Corporate, GRC

31

Gantt Chart

Program Activities		Year 1				Year 2			
Physical		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1	Project Management Plan Milestones: • Program kick-off • Project plan development								
Task 2	Technology Status Assessment Milestone: State of-the-technology report	•							
Task 3	Technology Transfer Milestones: • Technology transfer plan • Final technology transfer status and report	•							
Task 4	Determine Single-Modality Casing Fault Detection and Inspection Entitlement Milestone: Single modality entitlement established Go/No Go: Entitlement recommendation based on risk evaluation and sensor performance	F		•					
Task 5	Down-Select the Cross-Modality Well Casing Integrity Sensing Components Milestone: Multi-modality well casing integrity sensing components selected Go/No Go: Recommendation for proceeding the cross-modality inspection system based on design specifications and the evaluation of the associated risks				•				
Task 6	Design and Build the nXis Prototype System Milestones: • nXis prototype system designed • System specification report based on risk assessment Go/No Go: Decision/recommendation based on the tests of the designed system components, and the evaluation of the remaining risks Phase I Deliverables: • Subcomponent technologies of the nXis system proven-out • Final technical report and presentation				• • • •				

Gantt Chart

Program Activities			Year 1			Year 2			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Phase II	Prototype design, fabrication, and testing								
Task 7	Develop Multi-Modality Data Fusion and Fault Detection Algorithms Milestone: Multi-modality data fusion and fault detection algorithms developed Go/No Go: Recommendation based on feasibility, cost, and schedule determinations for the design optimization and mixed modality system test						◆ ◇		
Task 8	Optimize the Integrated Mixed-Modality Well Casing Integrity Sensing System Design Milestone: nXis system design optimized Go/No Go: Decision/recommendation based on the tests of the optimized system components, and the evaluation of the remaining risks							•	
Task 9	Field Test and Demonstrate nXis System in a Test Well Milestones: • Test plan finalized • nXis system tested and demonstrated in downhole context Go/No Go: Decision based on risks related to 3rd party wells, equipment handling, and regulatory and property owner approval Phase II Deliverables: • nXis prototype development and test • System design final technical report and presentation							•	

Legend: \blacklozenge Milestone \diamondsuit Decision Point ∇ Deliverable

The official program end date is September 30, 2016. However, a 6-months no-cost extension has been requested to complete all the tasks.

Bibliography

Conference Presentations/ Proceedings:

 Y.A. Plotnikov, F.W. Wheeler, S. Mandal, W.R. Ross, J.S. Price, E.J. Nieters, A. Ivan, S. Dolinsky, H.C. Climent, and A.M. Kasten, 2016, Review of Progress in Quantitative NDE Conference: Development of an Electromagnetic Imaging System for Well Bore Integrity Inspection. QNDE, July 2016, Atlanta, GA.

Accepted Conference Presentations:

- SPE Liquids-Rich Basins Conference, September 21-23, 2016, Midland, TX
- 2016 AIChE Annual Meeting, November 13-18, 2016, San Francisco, CA

Multiple patent disclosures have been filed. Journal publications will be submitted after completion of technical work.

